Impact testing of polymeric foam using Hopkinson bars and digital image analysis

نویسندگان

  • Jiagui Liu
  • Dominique Saletti
  • Stéphane Pattofatto
  • Han Zhao
چکیده

This paper has investigated the impact testing method on the polymeric foams using digital image correlation. Accurate average stress-strain relations can be obtained when soft large diameter polymeric pressure bars and appropriate data processing are used. However, as there is generally no homogeneous strain and stress fields for polymeric foam, an optical displacement field observation is essential. In contrast with quasi-static tests where the digital image correlation (DIC) measurement is commonly used, technical difficulties still remain for an use under impact conditions such as synchronization and measuring accuracy due to rather poor quality images obtained from high speed camera. In the present paper, an accurate synchronization method based on direct displacement measurement from DIC is proposed and the feasibility of a calibration method using DIC on pressure bar ends is discussed. The relevance of the present method for establishing mechanical response of polymeric foam is also demonstrated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental and numerical investigations on the use of polymer Hopkinson pressure bars.

Split Hopkinson pressure bar (SHPB) testing has traditionally been carried out using metal bars. For testing low stiffness materials such as rubbers or low strength materials such as low density cellular solids considered primarily herein, there are many advantages to replacing the metal bars with polymer bars. An investigation of a number of aspects associated with the accuracy of SHPB testing...

متن کامل

High Rate Characterization of Low Impedance Materials Using a Polymeric Split Hopkinson Pressure Bar

The characterization of soft or low impedance materials is of increasing importance since these materials are commonly used in impact and energy absorbing applications. There is a need to measure the high-rate material properties of soft materials, where the mode of loading is predominantly compressive and large deformations may occur at high rates of deformation. Importantly, the competing eff...

متن کامل

Load-Inversion Device for the High Strain Rate Tensile Testing of Sheet Materials with Hopkinson Pressure Bars

A high strain rate tensile testing technique for sheet materials is presented which makes use of a split Hopkinson pressure bar system in conjunction with a load inversion device. With compressive loads applied to its boundaries, the load inversion device introduces tension into a sheet specimen. Two output bars are used to minimize the effect of bending waves on the output force measurement. A...

متن کامل

Application of photon Doppler velocimetry to direct impact Hopkinson pressure bars.

Direct impact Hopkinson pressure bar systems offer many potential advantages over split Hopkinson pressure bars, including access to higher strain rates, higher strains for equivalent striker velocity and system length, lower dispersion, and faster achievement of force equilibrium. Currently, these advantages are gained at the expense of all information about the striker impacted specimen face,...

متن کامل

Using split Hopkinson pressure bars to perform large strain compression tests on polyurea at low, intermediate and high strain rates

The strain rate sensitivity of polyurea is characterized using a modified split Hopkinson pressure bar (SHPB) system. The device is composed of a hydraulic piston along with nylon input and output bars. In combination with an advanced wave deconvolution method, the modified SHPB system provides an unlimited measurement time and thus can be used to perform experiments at low, intermediate and hi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017